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a b s t r a c t 

The perception that someone is nearby, although nobody can be seen or heard, is called presence hallucination 
(PH). Being a frequent hallucination in patients with Parkinson’s disease, it has been argued to be indicative of a 
more severe and rapidly advancing form of the disease, associated with psychosis and cognitive decline. PH may 
also occur in healthy individuals and has recently been experimentally induced, in a controlled manner during 
fMRI, using MR-compatible robotics and sensorimotor stimulation. Previous neuroimaging correlates of such 
robot-induced PH, based on conventional time-averaged fMRI analysis, identified altered activity in the posterior 
superior temporal sulcus and inferior frontal gyrus in healthy individuals. However, no link with the strength 
of the robot-induced PH was observed, and such activations were also associated with other sensations induced 
by robotic stimulation. Here we leverage recent advances in dynamic functional connectivity, which have been 
applied to different psychiatric conditions, to decompose fMRI data during PH-induction into a set of co-activation 
patterns that are tracked over time, as to characterize their occupancies, durations, and transitions. Our results 
reveal that, when PH is induced, the identified brain patterns significantly and selectively increase their transition 
probabilities towards a specific brain pattern, centred on the posterior superior temporal sulcus, angular gyrus, 
dorso-lateral prefrontal cortex, and middle prefrontal cortex. This change is not observed in any other control 
conditions, nor is it observed in association with other sensations induced by robotic stimulation. The present 
findings describe the neural mechanisms of PH in healthy individuals and identify a specific disruption of the 
dynamics of network interactions, extending previously reported network dysfunctions in psychotic patients with 
hallucinations to an induced robot-controlled specific hallucination in healthy individuals. 
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. Introduction 

The sense of presence or presence hallucination (PH) is the sensa-
ion of feeling another person close by when in fact no one is actu-
lly there ( James, 1902 ). It has been described as an incomplete hal-
ucination, which although vividly perceived, cannot be attributed to
ny of the usual “sensible ways ”, such as visual and auditory percep-
ion ( James, 1902 ; Jaspers, 1913 ). PH has been reported in a variety of
edical disorders ranging from stroke ( Blanke et al., 2003 ) to epilepsy

 Blanke et al., 2014 ), brain stimulation during invasive presurgical eval-
ations ( Arzy et al., 2006a ), and schizophrenia ( Jaspers, 1913 ). PH
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s also one of the most frequent hallucinations in Parkinson’s Disease
 Diederich et al., 2009 ; Fénelon et al., 2011 ) and has also been reported
y healthy individuals in extreme situations (e.g., Messner, 2016 ). 

Clinical evidence suggests that altered processing of bodily and sen-
orimotor signals is an important mechanism in PH, given the ‘shar-
ng’ of posture, position, and movement between the patient and the
presence’, as well as the association of PH with sensorimotor deficits
 Brugger et al., 1996 , 1997 ; Blanke et al., 2008 ). Although the parox-
smal and short-lasting characteristics of PH made it difficult to study
his hallucination, Arzy et al. (2006a) demonstrated that the PH can be
nduced repeatedly and in a controlled fashion through electrical brain
h (O. Blanke). 
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Fig. 1. Robotic system and experimental paradigm 

(A) MR-compatible robotic system used to induce the PH in healthy individuals. 
The robotic system is composed of a front part, which has a manipulator stick 
slide on a rail, and allows the participants to move in the x (bottom and up) 
and z (up and down) directions. These movements are then transmitted to a 
back robot that is confined below an MR-compatible platform. In the present 
experiment the back robot mimics the movements of the front part of the robotic 
system either in real-time, or with a delay of 500 milliseconds. (B) During the 
experiment participants perform two runs, each with sixteen 30 second blocks 
of robotic manipulation, interleaved with 15 s of rest. The blocks of robotic 
manipulation are performed in the synchronous condition, where movements 
with the front robot are reproduced in real-time by the back robot, or in the 
asynchronous condition, where movements with the back robot are reproduced 
by the back robot with a delay of 500 milliseconds. Blocks of the same type do 
not appear more than twice in a row. Auditory cues passed on to the participant 
through headphones, mark the beginning and ending of each block. (Adapted 
from Bernasconi et al., 2021 ). 
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timulation of the temporo-parietal junction (TPJ), a major integration
ub for multisensory and sensorimotor bodily signals ( Matsuhashi et al.,
004 ; Arzy et al., 2006b ; Blanke, 2012 ). 

Based on these clinical data, Blanke et al. (2014) showed that a
obotic setup is capable of inducing a sensation comparable to PH. In
his setup, participants actuate two interconnected robots that allow to
odulate the intensity of robotically induced PH by changing the de-

ay between the movements of the participant and the tactile feedback
n the back of the participant. Stronger PH occurs when a delay be-
ween movements and feedback is inserted (asynchronous condition;
ig. 1 ), rather than when it is not (synchronous condition). Using MR-
ompatible robotics and fMRI in healthy participants, an extended net-
ork was identified to be associated with PH ( Bernasconi et al., 2021 ).
oreover, these authors used lesion network mapping analysis from

eurological patients reporting symptomatic PH to further corroborate
he PH network, leading to three areas that overlapped with the regions
evealed by fMRI during robot-induced PH: the posterior part of the mid-
le temporal gyrus and superior temporal sulcus (pSTS), ventral premo-
or cortex (vPMC), and the inferior frontal gyrus (IFG) ( Bernasconi et al.,
021 ). From these three regions, only the pSTS and IFG differed in their
ctivity between the asynchronous versus synchronous condition and
ere further considered for the present study. 

Despite the implication of pSTS and IFG regions in the difference be-
ween asynchronous versus synchronous condition, their activities did
ot correlate with the intensity of the robot-induced PH. In addition,
oncomitant to the induction of the PH in the asynchronous condition,
obotic stimulation also induced certain passivity experiences (PE; i.e.,
he sensation that someone else is touching your body; ( Mlakar et al.,
994 ), with most participants that experienced PH reporting it in uni-
on with PE, while others that did not experience PH still reporting PE.
2 
onsidering that clinical observations have highlighted the paroxysmal
ature and short duration of PH ( Blanke et al., 2008 ; Fénelon et al.,
011 ), we hypothesize that the temporal dynamics of the PH’s neural
nderpinnings might share these aspects, and hence could be revealed
ith methods detecting dynamic changes in brain activity. 

In the present study, we set to identify the neural mechanisms of
he PH in more detail. We focus particularly on studying the temporal
ynamics and more subtle changes in brain activity that might under-
ie PH. To do so, we investigated fMRI BOLD signal during the robotic
ensorimotor task, used to induce the PH ( Bernasconi et al., 2021 ),
nd applied recently established dynamic functional connectivity (dFC)
ethods that can capture whole-brain network fluctuations in short

ime ranges ( Hutchison et al., 2013 ; Preti et al., 2017 ) and that have
hown promising results in the study and differentiation of psychiatric
onditions ( Damaraju et al., 2014 ; Rashid et al., 2014 ; Bolton et al.,
020a ). Specifically, we apply Co-Activation Patterns (CAPs; Liu and
uyn, 2013 ) analysis to investigate the dynamically occurring and spa-

ially distributed activity patterns that reflect functional networks asso-
iated with the induction of PH and of PE. CAP analysis is based on the
ssumption that when the BOLD signal is high in relevant seed regions
 Tagliazucchi et al., 2011 , 2012 ), different CAPs are expressed at differ-
nt moments in time ( Liu and Duyn, 2013 ). As seeds, we chose the two
ey regions (pSTS, IFG) that were associated with both the PH-inducing
ondition in healthy people and the network in neurological patients
ith PH ( Bernasconi et al., 2021 ). The CAPs related to these seeds were

haracterized by their occupancy, average duration, and transition prob-
bilities ( Chen et al., 2015 ; Bolton et al., 2020b ), and compared across
he two experimental conditions and rest, as well as between different
ntensities of PH and PE. 

Based on our proposition for a short-lived brain mechanism for PH,
e hypothesized that its neural correlates would consist in a temporary
ominance of certain CAPs (e.g. increased occupancy, average duration,
r a shift in transition probabilities favouring one or more CAPs), a pro-
ess comparable to network intrusions following the disengagement of
ntrinsic networks (i.e. decreased anticorrelation between intrinsic and
ensory networks) that have been observed in other types of hallucina-
ions ( Jardri et al., 2013 ; Shine et al., 2015 ) and potentially related to
eural processes described for PH and other hallucinations in Parkin-
on’s disease ( Bejr-kasem et al., 2018 ; Lenka et al., 2019 ). We further-
ore hypothesized that the neural mechanisms of PH might extend from

he seed regions (pSTS, IFG) to frontal and parietal regions, in partic-
lar the inferior parietal lobule (IPL), as this region has been involved
n neurological patients with PH ( Blanke et al., 2014 ) and to dorsolat-
ral prefrontal cortex (dlPFC), as IPL and dlPFC have been implicated in
omparable sensorimotor tasks which investigated the sense of agency
 Farrer and Frith, 2002 ; Farrer et al., 2008 ). 

. Materials and methods 

The present study performed dFC analysis on the data from
ernasconi et al. (2021) . The following sections will summarise the par-
icipants included, and the experimental design used in that study, as
ell as the analysis and methodologies employed in the present study. 

.1. Participants 

25 healthy individuals (10 females) with a mean age of 24.68
 ± 3.70, range 18–32) years old took part in the PH-induction ex-
eriment (study 2.1 in Bernasconi et al., 2021 ). Every participant
as right-handed as assessed by the Edinburgh Handedness Inventory
 Oldfield, 1971 ). All participants gave their informed consent prior to
he start of the experiment, following the Declaration of Helsinki, and
he study was approved by the local ethics committee of the Canton of
enève, Switzerland. 
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.2. Experimental paradigm 

Throughout the experiment, participants were blindfolded with an
ye masque and wore both ear protection and headphones, in an effort
o maximally isolate them from the surroundings. Laying on top of a
pecial platform-bed, that concealed the back part of the robotic system
sed to induce PH, participants could manipulate a lever attached to the
ront part of the robotic system ( Fig. 1 A). The robot itself, composed of
 front and back part, allows its users to provide tactile feedback on
heir own backs. This is achieved by moving the front part of the system
ith a lever, which controls the back part of the robot that provides tac-

ile feedback on the participant’s back. A conflict in the spatial domain
s hence always present, with the movements performed in the front
pace being perceived immediately on the back space (synchronous con-
ition). A second conflict can be introduced in the temporal domain, by
elaying the feedback received on the back (asynchronous condition). In
he asynchronous condition where these two conflicts are combined, the
ensation of having someone behind you (PH), and the sensation that
omeone else producing is your actions (PE), can be elicited in healthy
ndividuals (Blanke et al., 2014). 

The task itself consisted of 16 blocks of 30 s of robot manipulation,
nterleaved by blocks of 15 s of rest ( Fig. 1 B). Two conditions were
ssessed: the synchronous condition in which the movements performed
y the participants with the front part of the system were synchronously
eproduced onto their backs, and the asynchronous condition where a
elay of 500 ms was introduced between the performed movement and
he tactile feedback. The conditions were presented randomly to the
articipants, with no same condition being delivered more than twice
n a row. In total, each participant performed two runs, with a total
uration of 25 min. 

At the end of the scanning session, participants performed 30 s of
obotic manipulation for each condition (i.e., synchronous and asyn-
hronous) in a counterbalanced fashion. After each condition, partic-
pants answered a questionnaire assessing their subjective experience
uring the robotic stimulation (7-point Likert scale, see Supplementary
able S1). The questionnaire included questions such as, “I felt as if
 was touching my body ”, to assess self-touch impressions, “I felt as if
omeone else was touching my body ”, to assess PE, and “I felt as if some-
ne was behind me ” to assess PH. For each participant we computed the
trength of the induced sensations, respectively for each questionnaire
tem, as the difference between the score in the asynchronous and syn-
hronous conditions. A positive score reflects an induced sensation that
s stronger in the asynchronous condition, whereas a negative score in-
icates a stronger sensation in the synchronous condition. 

.3. MRI data acquisition 

Functional image acquisitions were performed at the MRI facility of
he Campus Biotech (Geneva, Switzerland), with a Siemens MAGNETON
risma 3T scanner, and using a 64-channel head-and-neck coil. For the
ensorimotor task, echo-planar sequences were used (EPI, TR = 2.5 s,
E = 30 ms, with a flip angle of 90°, GRAPPA = 2), with a resolu-
ion of 2.5 × 2.5 mm, and a slice thickness of 2.5 mm (no gap, 43
lices). Anatomical images were acquired with T1-weighted MPRAGE
equences (192 slices, FOV = 240 mm, TR = 2.3 s, TE = 2.32 ms). 

.4. Dynamic functional connectivity analysis through co-activation 

atterns 

CAPs analysis is based on point process analysis ( Tagliazucchi et al.,
012 ) and temporal clustering ( Liu and Duyn, 2013 ). In particular, given
he activity time course of one or more seed regions, different dynami-
ally occurring network configurations that co-activate with these seeds
re extracted. For the present implementation, we built upon the Tb-
APs toolbox ( Bolton et al., 2020b ). The data was pre-processed using
3 
ustom MATLAB (MATLAB 2019b) scripts and SPM12 functions (Well-
ome Department of Cognitive Neurology, Institute of Neurology, UCL,
ondon, UK). Volumes were realigned to the first scan, and spatially
moothed with a gaussian filter (FWHM = 6 mm), after being normal-
zed to MNI space. Then, linear trends were removed from each voxel’s
ime course, and such time courses were further temporally z-scored. 

The first step of CAPs analysis requires the selection of one or more
eed regions in order to identify timepoints when these seeds exhibit
igh BOLD signal. As seeds we considered the right pSTS and right IFG,
hich are the only two regions that were previously reported to be more
ctive in the asynchronous condition (where PH and PE are induced)
han in the synchronous condition, and are part of a functionally im-
aired network in neurological patients experiencing symptomatic PH
 Bernasconi et al., 2021 ). In the second step of the analysis, timepoints
f any of the two seed regions where activity exceeded a z-score of 1,
ere marked and considered for further analysis. To deal with head
otion, timepoints with a framewise displacement above 0.5 mm were

crubbed ( Power et al., 2012 ). In the third step, the volumes (frames)
f the selected timepoints were fed into a k-means algorithm to obtain
emporal clusters based on spatial patterns. The best k was selected be-
orehand through consensus clustering which provides stability mea-
ures for data points being clustered together across different numbers
f selected centroids ( Monti et al., 2003 ). In the fourth and final step,
ll frames assigned to the same label were averaged to obtain a repre-
entative CAP. The frames of timepoints when none of the seeds were
ctive are averaged in a non-active state, CAP 0 . Finally, each timepoint
s tagged, taking into account haemodynamic lag of 2 TRs, to one of
he three experimental conditions: asynchronous sensorimotor manipu-
ation, synchronous sensorimotor manipulation, or rest. 

.5. Occupancy and average duration of the CAPs 

For each CAP (CAP 1 to CAP 9 ) and for the non-active state (CAP 0 ),
wo metrics were computed during the different experimental condi-
ions: occupancy and average duration ( Chen et al., 2015 ). Let CAP i [k]
e the binary time course that indicates if CAP i , is active at any time-
oint k element of the set 𝐷 𝑆,𝐶 which contains all active, non-active,
nd scrubbed, timepoints of a condition C , for a single participant S .
ccupancy refers to the percentage of scans a CAP i occupies in a given
ondition: 

𝑐 𝑐 
(
𝑖 ; 𝐷 𝑆,𝐶 

)
= 

∑
𝑘 ∈𝐷 𝑆,𝐶 𝐶𝐴 𝑃 𝑖 [ 𝑘 ] 

||𝐷 𝑆,𝐶 
||

. 

We define CAPDur i [r] as the duration (number of consecutive time-
oints active) of CAP i for each associated occurrence r . Average dura-
ion is the mean CAP duration for each participant: 

𝑣𝑔𝐷 𝑢𝑟 
(
𝑖 ; 𝐷 𝑆 

)
= 𝐶𝐴𝑃 𝐷 𝑢 𝑟 𝑖 ( 𝑟 ) . 

With the main goal of identifying specific CAP behaviour in the
synchronous versus synchronous condition, as well as its association
ith PH and PE, CAPs’ occupancies were tested across conditions by
eans of a non-parametric ANOVA (Friedman’s test). When significant

ffects were observed, this was followed by post-hoc non-parametric
ests of the medians (i.e., Wilcoxon rank sum test) for each of the CAPs
o reveal significant changes in occupancy with the experimental dif-
erent conditions. These results were corrected for the false discov-
ry rate (FDR) with the Benjamini-Hochberg procedure ( Benjamini and
ochberg, 1995 ) to correct for multiple comparisons (i.e., number of
APs). 

The average duration of a CAP was only computed for the actual
ccurrences of a CAP. If a CAP never occurred for a participant in a
pecific condition, that measure of average duration was not considered
ero, but rather the participant was excluded for the assessment of that
pecific measure. As consequence the number of measures of average du-
ation, per CAP and per condition, was not always equal to the number
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f participants. These different sample sizes meant that average dura-
ion could not be tested with a Friedman’s test. We hence, tested average
uration with Linear Mixed Models (LMM), using the lmer function pro-
ided with the package lme4 ( Bates et al., 2015 ) available for R (version
.6.1). The average duration was modelled as a function of CAP, con-
ition, interaction between CAP and condition, and a random-intercept
ccounting for inter-participant variability. 

𝑣𝑔𝐷𝑢𝑟 ∼ ( 1 |𝑃 𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ) + 𝐶𝐴𝑃 + 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝐶𝐴𝑃 ∶ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

The parameters of the model were tested for significance by sequen-
ial comparison of the simplest model with only the random-participant
ntercept against a model adding the CAP parameter, followed by com-
aring the latter model with one adding the condition parameter, and
nally comparing this one with the full model that includes the inter-
ction parameter. Comparisons were performed with the Wald 𝜒2 test
 Liu, 2016 ). If an interaction was detected, the effect of condition on
verage duration was then investigated for each CAP. 

If a CAP was found to have higher occupancy or average duration
n the asynchronous condition, Spearman’s correlations were used to
nvestigate potential relationships between that CAP’s occupancy or av-
rage duration and the strength of the subjective experiences of PH and
E. 

.6. Transition probabilities between the CAPs 

To characterize temporal relationships between CAPs, we computed
ransition probabilities (TPs) that describe the probability of a CAP to
ransition to itself, to another CAP, or to the non-active state (CAP 0 ).
er condition and per participant, the TPs of an initial CAP i to a next
AP j are computed by normalising the number of times a starting CAP
 transitions to a next CAP j , by the number of times the initial CAP i
ccurs: 

 𝑃 
(
𝑖, 𝑗; 𝐷 𝑆 

)
= 

∑
𝑘 ∈𝐷 𝑆 CA P 𝑖 [k]CA P 𝑗 [k + 1] 

∑
𝑘 ∈𝐷 𝑆 CA P 𝑖 [k] 

. 

The TPs can then be organized per participant and condition into a
0 × 10 matrix, which will be considered as the TP matrix characterizing
 first-order Markov chain modelling the sequence of CAPs. 

The goal was now to investigate if the Markov model changes, under
ifferent experimental conditions, and between the subgroups of partic-
pants who are sensitive (or not) to PH and/or PE induction. To that
im, we modelled the TPs with LMM. Our approach to this problem can
e described as a three-step hierarchical analysis of the factors that can
nfluence TPs. 

We first modelled the TPs based on the initial and next CAPs involved
n each transition. This implied modelling the data with a fixed-effect
arameter for the initial CAP, a fixed-effect parameter for the next CAP,
nd an interaction parameter for the initial and next CAPs. Between-
articipant variability is accounted for in the model with a random in-
ercept: 

 𝑃 ∼ ( 1 |𝑃 𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ) + 𝐶𝐴 𝑃 𝑖𝑛𝑖𝑡 + 𝐶𝐴 𝑃 𝑛𝑒𝑥𝑡 + 𝐶𝐴 𝑃 𝑖𝑛𝑖𝑡 ∶ 𝐶𝐴 𝑃 𝑛𝑒𝑥𝑡 

We assessed how each parameter improved the explained variance
f the data, by consecutive comparisons of increasingly complex models
0, I, II, III) with a Wald 𝜒2 test. Model 0 only comprised a random-effect
arameter for between participant variability. Model I included in ad-
ition, a fixed-effect parameter for the initial CAP (i.e., row in the TP
atrix). Model II added a fixed-effect parameter for the next CAP (i.e.,
4 
olumn in the TP matrix). And Model III added the interaction between
he initial and the next CAP, which expresses that TPs for each pair
f CAPs can be different. For this group of models (and for all subse-
uent groups of models) we report the variation of Akaike Information
riteria ( ΔAIC; Akaike, 1974 ), which gives an indication of goodness-
f-fit penalised by the complexity of the model. For clarity this varia-
ion should be negative if a model higher variance explanation compen-
ates its higher complexity (as compared to another less complex model,
hich also explains variance but to a lesser degree). 

In case Model III revealed a significant effect of the interaction pa-
ameter, we continued with the second step of the analysis. We divided
he subsequent analysis into two parts. First, fixing a specific initial
AP (i.e., row of the TP matrix) to investigate forward properties of
he Markov models, and second, fixing a specific next CAP (i.e., column
f the TP matrix) to investigate backward properties of the Markov mod-
ls. For this analysis we limited the division in specific initial CAP, or
pecific next CAP, to CAPs that are more prominent during the sensori-
otor task (i.e. significantly higher Occurrences and/or Average Dura-

ion, during the asynchronous and synchronous conditions rather than
est). However, the variables, CAP next in the forward properties model,
nd CAP init in the backward properties model, represented all possible
tates (inactive state and CAPs). The corresponding LMMs are repre-
ented as follows, with F or B representing the forward or backward
roperties, and i the fixed initial or next CAP: 

Forward Properties 𝑇 𝑃 ( 𝐶 𝐴 𝑃 𝑖𝑛𝑖𝑡 = 𝐶 𝐴 𝑃 𝑖 ) ∼ ( 1 |𝑃 𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ) +
 𝐴 𝑃 𝑛𝑒𝑥𝑡 + 𝐶 𝑜𝑛𝑑 + 𝑃 𝐻 + 𝐶 𝑜𝑛𝑑 ∶ 𝑃 𝐻

Backward Properties 𝑇 𝑃 ( 𝐶 𝐴 𝑃 𝑛𝑒𝑥𝑡 = 𝐶 𝐴 𝑃 𝑖 ) ∼ ( 1 |𝑃 𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ) +
 𝐴 𝑃 𝑖𝑛𝑖𝑡 + 𝐶 𝑜𝑛𝑑 + 𝑃 𝐻 + 𝐶 𝑜𝑛𝑑 ∶ 𝑃 𝐻

These models included the effects of, condition, sensitivity to PH
nduction (positive PH-strength score), and interaction between these
wo. The sensitivity to the induction of the PH can be interpreted as a
roup variable as it is a binary value. To assess the effect of sensitivity to
E induction (positive PE-strength score) and interaction with condition,
nother set of models was used (for F i and B i , Models II and III). This was
ue to convergence not being achieved with the current amount of data
vailable if both PH, PE, and respective interactions with conditions,
re analysed simultaneously. To compensate for this, we lowered the
ignificance threshold of the subsequent Wald 𝜒2 tests to 0.025, instead
f 0.05. As before, the effect of each model’s parameters was assessed
y sequentially comparing simpler models and more complex models,
.g. from Model B i 0 to Model B i III (PH), using the Wald 𝜒2 test. These
esults were corrected for FDR with the Benjamini-Hochberg procedure
o correct for multiple comparisons (i.e., number of assessed transitions
y number of induced illusions). 

Finally, if a significant effect of the interaction between condition
nd sensitivity to PH-induction or to PE-induction, was observed for a
pecific B i III Model, then that model continued into the third and last
tep of the analysis. Here, to properly investigate the effect of sensi-
ivity to PH or PE induction on the TPs over different conditions, the
odels also fixed the conditions (these models will have C added in the
otation, as in F i 

c (PE) with C taking the values a, s or r, identifying
he asynchronous, synchronous or rest condition, respectively). Results
ere corrected for multiple comparisons using the Benjamini-Hochberg
rocedure, simultaneously for the number of conditions times the num-
er of independent models. An example for investigating the effect of
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ensitivity to PH-induction, on the TPs of a specific 𝐶 𝐴 𝑃 𝑛𝑒𝑥𝑡 = 𝐶 𝐴 𝑃 𝑖 in
he synchronous condition, is the following model: 

 𝑃 
(
𝐶 𝐴 𝑃 𝑛𝑒𝑥𝑡 = 𝐶 𝐴 𝑃 𝑖 , 𝐶 𝑜𝑛𝑑 = 𝑆𝑦𝑛𝑐 

)
∼ ( 1 |𝑃 𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ) + 𝐶𝐴 𝑃 𝑛𝑒𝑥𝑡 + 𝑃 𝐻

.7. Control analyses 

In order to account for potential confounds in our analysis and test
he specificity temporal metrics of the CAPs associated with the pSTS
nd IFG, we ran two additional CAP analyses. Both analyses follow the
nalysis protocol described in the previous sub-chapters, however, the
APs clustering procedure is based on control regions instead of our
egions of interest: pSTS and IFG. 

The first control analysis is intended to control for known intrinsic
rain networks. For this analysis we performed CAPs clustering based
n the activity of the posterior cingulate cortex (PCC), an area known to
ecover sub-states of a major intrinsic brain network, the default-mode
etwork (DMN; Shirer et al., 2012 ). 

The second control analysis is intended to control for other regions
hat are known to be associated with the asynchronous condition (i.e.
ore active in this condition compared to the synchronous condition),

ut potentially not associated with PH. Besides the pSTS and IFG, both
he anterior insula (aINS) and the medial superior frontal gyrus (mSFG),
howed higher activity in the asynchronous condition when compared
o the synchronous one ( Bernasconi et al., 2021 ). However, in contrast
o the pSTS and IFG, these two regions (aINS and mSFG), did not over-
ap with the functionally impaired network extracted from neurological
atients afflicted with PH ( Bernasconi et al., 2021 ). Consequently, we
ypothesize that CAPs associated with these regions might show a task
odulation, but should not be related to PH/PE. 

. Results 

.1. CAP analysis reveals multiple distinct spatial patterns 

With CAP analysis, we explored how different CAPs occurred and
nteracted under different experimental conditions, and, secondly, how
his was associated with the level of the subjective experience of PH and
E. The identified CAPs consisted of brain regions co-activating with one
r both seeds, during periods in which at least one of the seeds was ac-
ive (z-score above 1). The IFG seed was considered active on average
4.7% (SD: ± 2.9) of the total timepoints of the entire experiment (i.e.,
ll sequential periods of rest, robot manipulation in the asynchronous
ondition, robot manipulation in the synchronous condition; in their
riginal order for each participant, respectively). A similar percentage
f 15.0% (SD: ± 2.1) was found to be active for the pSTS seed. On av-
rage, 23.6% (SD: ± 3.4) of all timepoints were selected, given that
eed activity overlapped at given times. The remaining timepoints were
ssigned to the non-active state, with only 0.4% (SD: ± 1.0%) being
crubbed. Following timepoint selection, consensus clustering was run
o determine the best number of centroids for the clustering procedure.
he stability measure assessed with this method recommended segre-
ating the data into 9 centroids (Supplementary Fig. S1). Hence, CAPs
nalysis was applied to the selected timepoints revealing nine different
o-activation patterns (Supplementary Fig. S2 and Table S2, for descrip-
ion of cluster peaks), for which occupancy, average duration, and TPs
ere explored (see below). 

.2. Sensorimotor conditions alter CAPs occupancy and average duration 

Here, we will first focus on the analysis of a CAP’s occupancy (per-
entage of a CAP occurrence in a condition) and a CAP’s average dura-
ion (number of seconds a CAP lasts on average, once it occurs) across
he two sensorimotor conditions and rest. 

Occupancy. Friedman’s test revealed a significant difference in oc-
upancy of CAPs between the conditions of asynchrony, synchrony, and
5 
est (p-value = 0.020). Follow-up multiple comparison corrected post-
oc tests revealed that several CAPs changed their occupancy depending
n the condition ( Fig. 2 A). CAP 6 was the only CAP to show a higher
ccupancy in the asynchronous condition, when compared to both the
ynchronous condition (p-value = 0.049) and to rest (p-value = 0.002).
his CAP’s increase in occupancy between the asynchronous and syn-
hronous condition did not show any significant correlation with the
trength of the subjective experiences of PH ( 𝜌 = 0.10, p-value = 0.630)
r with PE ( 𝜌 = 0.23, p-value = 0.280). CAP 7 and CAP 9 had a signif-
cantly higher occupancy for both asynchronous and synchronous con-
itions, when compared to rest (both pvalues < 0.001). However, the
ccupancy of these two CAPs did not differ between the asynchronous
nd synchronous conditions. A summary of the occupancy results for all
emaining CAPs can be seen in the Supplementary Table S3. 

Average duration. Linear mixed models fixed-effect statistics re-
ealed a significant effect of CAP on the average duration (p-value <
.001), showing that different CAPs have different average durations.
 significant effect of condition was also identified (p-value < 0.001),

ndicating that the experimental conditions significantly changed the
verage durations of the CAPs. Crucially, a significant interaction be-
ween CAP and condition was observed (p-value < 0.001), showing
hat the experimental conditions affected the average duration of each
AP differently. To further investigate this interaction, we ran post-hoc
ests for the effect of condition on each CAP ( Fig. 2 B). CAP 6 showed
 significant difference in average duration across the conditions, with
he asynchronous condition having a higher average duration than the
ynchronous condition and rest (estimate in asynchronous condition:
.56, SE = ± 0.17, t-value = 20.66; estimate effect of synchronous con-
ition: − 0.60, SE = ± 0.24, t-value = − 2.55; estimate effect of rest: - 0.57,
E = ± 0.24, t-value = − 2.33; p-value = 0.021). This increase of average
uration did not show any correlation with the strength of the induced
H ( 𝜌 = 0.06, p-value = 0.78), nor that of PE ( 𝜌 = 0.05, p-value = 0.78).
AP 7 also showed a significant difference in average duration across the
onditions, with the asynchronous condition having a higher average
uration than the synchronous condition and rest, and the synchronous
ondition also lasting longer than rest (estimate in asynchronous condi-
ion: 3.41, SE = ± 0.16; t-value = 21.81 estimate effect of synchronous
ondition: − 0.30, SE = ± 0.22, t-value = − 1.40; estimate effect of rest:
 0.64, SE = ± 0.22, t-value = − 2.95; p-value = 0.015). This increase
f average duration for CAP 7 did not show any correlations with the
trength of induced PH ( 𝜌 = 0.04, p-value = 0.84), nor that of induced
E ( 𝜌 = 0.12, p-value = 0.55). The values for all other CAPs were not
haracterized by significant results (p-value > 0.05) and are summarised
n Supplementary Table S4. 

Brain activation for Co-Activation Pattern 6. The network identi-
ed as CAP 6 ( Fig. 3 A) is composed by ten brain regions, with its main
omponents in the right pSTS, bilateral inferior parietal lobule (IPL, cen-
red on the angular gyrus, AG), the right dorso-lateral prefrontal cortex
dlPFC), which included the IFG region used as seed, and the middle pre-
rontal cortex (mPFC; including part of the supplemental motor area,
MA). Smaller cortical regions were found in the left dlPFC and left pre-
otor cortex. Subcortical activations were detected in the right caudate

nd the cerebellum (left Crus I and II). Deactivations were observed in
he cuneus and the occipital gyrus. 

.3. Experience of PH changes CAPs’ transition probabilities 

Next, we investigated to what extent CAPs’ transitions are affected
y the experimental conditions (asynchronous, synchronous, rest) and
y sensitivity to the induction of PH and PE (more information on the
odel’s results in supplementary table S5). 

In the first step of this analysis, we assessed whether TPs depended
n the initial and next CAP, by comparing the first three models. Linear
ixed models fixed-effect statistics revealed significant effects for all

he parameters associated with transitions between CAPs. Specifically,
odel I revealed a significant effect of the initial CAP (p-val = 0.009,
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Fig. 2. Occupancy and average duration of the CAPs 
(A) The occupancy of CAPs 5 to 9 in the different conditions. While CAPs 7 and 9 were associated with the sensorimotor conditions, CAP 6 showed a significantly 
higher occupancy for the asynchronous condition as compared to synchrony (and rest), denoting its specificity to the temporal conflict present in the asynchronous 
condition. (B) The average duration of CAPs 5 to 9. Only CAPs 6 and 7 show an effect of condition on the average duration, with CAP 6 lasting more in the 
asynchronous condition, and CAP 7 lasting more, the more sensorimotor conflicts are introduced. ( ∗ p-value < 0.05; ∗ ∗ p-value < 0.01; ∗ ∗ ∗ p-value < 0.001). 

Fig. 3. Anatomy of CAP 6 (PH) and CAP 9 (PE) 
(A) Brain regions of CAP 6 are shown involving the right posterior superior 
temporal sulcus, the bilateral inferior parietal lobule with focus on the angular 
gyri, the right dorso-lateral prefrontal cortex, the middle prefrontal cortex (in- 
cluding part of the supplemental motor area), the left dorso-lateral prefrontal 
cortex, the left precentral gyrus, the body of the caudate on the right, and in the 
cerebellum, the left Crus I and II. Deactivations are observed over the cuneus 
and occipital gyrus. (B) Brain regions of CAP 9 are shown in posterior cingu- 
late cortex, middle prefrontal cortex and bilateral posterior parietal cortex. This 
CAP extends from the DMN with clusters over the superior and middle frontal 
gyrus, bilateral clusters on the middle temporal gyrus, and bilateral clusters on 
the Crus I and II of the cerebellum. Two small clusters are also observed in the 
thalamus. 
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AIC = − 3.7), showing that CAPs’ TPs will change depending on the
nitial CAP of the transition. Model II revealed a significant effect of
he next CAP (p-val < 0.001, ΔAIC = − 4660.4), showing that CAPs’ TPs
lso depended on which CAP they are transitioning to. Finally, Model
II revealed a significant interaction effect between the initial CAP and
ext CAP of a transition (p-val < 0.001, ΔAIC = − 865.5), showing that
Ps are dependant on the specific combination of initial and next CAP.
iven this interaction effect, we proceeded with the analysis of the re-
aining parameters of condition, PH sensitivity, and PE sensitivity, and
id so separately for each value of initial (forward properties) and next
backward properties) CAP. 

Forward properties. Here we focused on analysing the remaining
arameters mentioned above, for each fixed initial CAP level ( 𝐶𝐴 𝑃 𝑖𝑛𝑖𝑡 =
𝐴 𝑃 𝑖 ). By doing so, Models F i I revealed a significant effect of condi-

ion ( Fig. 4 A, B, C, Supplementary Fig. S3) for transitions beginning in
AP init 9 (p-value = 0.008, ΔAIC = − 7.8), as seen in Fig. 4 D. The re-
aining models, F i II (PH) and F i III (PH), showed that PH sensitivity
id not significantly change the TPs, nor did its interaction with con-
ition. Sensitivity to PE also did not show any significant effect (F i II
PE)), nor did the interaction of this parameter with condition (F i III
PE)). Overall, the experimental conditions, have a small effect on how
he TPs change when departing from initial CAP 9, however no effect
as observed for sensitivity to PH or to PE. 

Backward properties. Here we focused on analysing the same pa-
ameters mentioned above, but for each fixed next CAP level ( 𝐶𝐴 𝑃 𝑛𝑒𝑥𝑡 =
𝐴 𝑃 𝑖 ). Models B i I revealed a main effect of condition ( Fig. 4 A, B, C,
upplementary Fig. S3) for transitions ending in CAP next 6 (p-value <
.001, ΔAIC = − 16.89), CAP next 7 (p-value < 0.001, ΔAIC = − 11.7),
nd CAP next 9 (p-value = 0.006, ΔAIC = − 6.2), as seen in Fig. 4 E. PH
ensitivity did not have a significant effect for any of the B i II (PH) Mod-
ls. However, Models B III (PH) detected a significant interaction effect
i 
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Fig. 4. CAPs’ Transition Dynamics across different conditions 
Transitions that occur at least 5% of the time for each CAP, are shown across the different conditions. Highlighted in blue are CAPs that changed forward properties 
significantly across conditions. Transitions departing from such CAPs are also depicted in blue. Highlighted in green are CAPs that changed their backward properties 
significantly across conditions. Transitions arriving at such CAPs are also depicted in blue. Coloured in white, are the transitions departing from an initial CAP with 
significant changes in forward properties, and arriving at a next CAP with significant changes in backward properties. CAPs in grey did not change properties across 
conditions. The size of each CAP is proportional to the amount of arriving and departing transitions. The size of each transition is related to its probability. (A) 

Asynchronous condition. (B) Synchronous condition. (C) Rest. (D) changes in forward properties’ across conditions (A - Asynchronous; S - Synchronous; R - Rest), 
can be seen in detail from CAP 9 to all the other CAPs. (E) Changes in backward properties’ across condition, can be seen in detail for transitions from every CAP, 
to CAPs 6, 7, and 9. 
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etween condition and PH sensitivity, for the transitions to CAP next 6 (p-
alue = 0.036, ΔAIC = − 4.85). Regarding PE, no main effect was found,
ut, crucially, a significant interaction between PE and condition was
bserved for the transitions to CAP next 9 (B i III (PE); p-value = 0.026,
AIC = − 5.5). Overall, the experimental conditions, have a widespread
ffect on how the overall TPs of every CAP, when transitioning to CAPs
, 7, and 9. Moreover, CAP 6 was linked to PH and CAP 9 to PE. 

Observing an interaction between PH sensitivity and condition im-
lied that the effect of being sensitive to PH induction varied with the
xperimental condition, but only for TPs ending in CAP 6. Hence, to bet-
er investigate the effect of PH sensitivity, we analysed each condition
7 
ndependently, for the transitions ending in CAP 6. Models B i 
c I (PH) re-

ealed a significant effect PH sensitivity in the asynchronous condition
or transitions ending in CAP next 6 (estimate = 0.072, SE = ± 0.029,
-value = 0.039, ΔAIC = − 4.12, Fig. 5 A, Supplementary Fig. S4), but
ot in the synchronous condition (estimate = 0.008, SE = ± 0.016, p-
alue = 0.59, ΔAIC = + 1.71, Fig. 5 B, Supplementary Fig. S4), nor in rest
estimate = 0.012, SE = ± 0.018, p-value = 0.47, ΔAIC = + 1.48). This
howed that during PH induction, most CAPs will have an increase in the
ransition probability to CAP 6 ( Fig. 3 A). Consequently, and observed
nly in the asynchronous condition, the PH induction puts the brain’s
ransition probabilities between different brain patterns, in a temporary
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Fig. 5. PH transition dynamics 
Transitions that occur at least 5% of the time for each CAP, are shown in the asynchronous condition for different sensitivities to the induction of PH. Highlighted 
in red are CAPs that significantly changed backward properties depending on the sensitivity to PH. Transitions arriving at such CAPs are also depicted in red. (A) 

CAPs’ transitions in the asynchronous condition when a PH is experienced (B) CAPs’ transitions in the asynchronous condition without PH. The induction of a PH 

significantly increases the transition probabilities of the CAPs to CAP 6, resulting in a high convergence of the other CAPs to CAP 6, which is not seen if a PH is not 
experienced. 

Fig. 6. PE transition dynamics 
Transitions that occur at least 5% of the time for each CAP, are shown in the asynchronous condition for different sensitivities to the induction of PE. Highlighted 
in red are CAPs that significantly changed backward properties depending on the sensitivity to PE. (A) CAPs’ transitions in the asynchronous condition when a 
PE is experienced (B) CAPs’ transitions in the asynchronous condition without PE. Transitions arriving at such CAPs are also depicted in red. The induction of PE 
significantly decreases the transition probabilities of the CAPs to CAP 9. 
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ynamic arrangement, in which CAPs predominantly transition to CAP
. 

Observing an interaction between PE sensitivity and condition im-
lied that the effect of being sensitive to PE induction varied with
he experimental condition, only for the TPs ending in CAP 9. In the
ame way as for PH, we analysed the PE factor independently for each
8 
ondition, for the transitions ending in CAP 9. Models B 9 
c I (PE) re-

ealed a significant effect of PE sensitivity on the transitions to CAP next 

 in the asynchronous condition (estimate = − 0.05, SE = ± 0.02, p-
alue = 0.030, ΔAIC = − 4.62, Fig. 6 A, Supplementary Fig. S5), but
ot in the synchronous condition (estimate = 0.005, SE = ± 0.017, p-
alue = 0.76, ΔAIC = + 1.21, Fig. 6 B, Supplementary Fig. S5) nor in rest
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estimate = 0.002, SE = ± 0.008, p-value = 0.77, ΔAIC = + 1.91). This
howed that if a participant is sensitive to PE induction, most CAPs will
ecrease their probability of transitioning to CAP 9, in the asynchronous
ondition. 

Brain activation for Co-Activation Pattern 9. The network iden-
ified as CAP 9 ( Fig. 3 B), contains significant clusters over the mPFC,
recuneus, posterior cingulate cortex (PCC), bilateral AG, bilateral su-
erior and middle frontal gyrus, as well as two bilateral clusters in the
TS region. Subcortical clusters included bilateral thalamus and the bi-
ateral cerebellum (Crus I and II). 

.4. Control analyses 

Posterior Cingulate Cortex. The CAPs clustering procedure for this
nalysis was done for only 6 centroids, as this was the recommended
alue by its own consensus clustering metrics (Supplementary Fig. S6).
rom the analysis of the occupancies and average durations of the ob-
ained CAPs, no single CAP showed specificity to the sensorimotor con-
itions (all CAP p-values > 0.05). All details on the statistical analysis
or this control analysis can be found in the supplementary material
Supplementary Table S6). 

Anterior Insula and Medial Superior Frontal Gyrus. The CAPs
lustering procedure for this analysis was also done for 9 centroids, as
ecommended by its own consensus clustering metrics (Supplementary
ig. S7). From the analysis of the occupancies and average durations
f the obtained CAPs, only one such CAP showed to be specific to the
ensorimotor conditions (in this case CAP aINS-mSFG-2, showed a sig-
ificant increase in average duration during the conditions, p-value <
.05, ΔAIC = − 9.62). When analysed for TPs, this CAP did not show any
nteraction between condition, and PH or PE (Forward properties – con-
ition and PH: p-value = 0.74; Forward properties – condition and PE:
-value = 0.78; Backward properties – condition and PH: p-value = 0.50;
ackward properties – condition and PE: p-value = 0.19). All details on
he statistical analysis for this control analysis can be found in the sup-
lementary material (Supplementary Tables S7 and S8). 

. Discussion 

In the present work we applied recent advances in dynamic func-
ional connectivity methods, to fMRI of brain activity, to explore fluc-
uating brain states during a novel paradigm linking MR-compatible
obotics and fMRI, used to control the subjective mental states of PH and
E in healthy individuals. We were able to identify two brain patterns,
AP 6 and CAP 9, which were both induced by the sensorimotor tasks,
nd sensitive to PH or PE, respectively. Such sensitivity was revealed as
 temporal rearrangement of brain activity by altered transition prob-
bilities that favoured CAP 6 in the event of PH and avoided CAP 9 in
he event of PE. These data demonstrate that changes in transition dy-
amics of a specific network underlie the experience of a PH, and that
uch changes are independent of the experience of PE which in many
articipants accompanies PH. 

.1. Neural correlates of the PH-induction 

A previous study has identified brain regions that in healthy partic-
pants are more active in the asynchronous condition (where PH and
E occur) rather than in the synchronous one, and further linked them
ith the PH through lesion network mapping analysis in neurological
atients reporting PH ( Bernasconi et al., 2021 ). Here, we identify a brain
attern, CAP 6, that has significantly higher occupancy and average du-
ation in the asynchronous condition. We argue that this reveals the sen-
itivity of CAP 6 to the temporal delay present in the asynchronous con-
ition, whereas other CAPs, such as 7 and 9, are modulated by the sen-
orimotor stimulation per se, and independently of the delay, given their
igher occupancies and longer average durations for both asynchronous
nd synchronous conditions as compared to rest. These results show that
9 
synchronous sensorimotor stimulation modulates a brain network that
ncludes brain regions previously associated to PH ( Bernasconi et al.,
021 ). 

The findings presented here, specifically the analysis of the CAPs
ransition probabilities, further demonstrate that the induction of PH
n the asynchronous condition is related to a significant change in how
APs transition amongst themselves. Only during the asynchronous con-
ition and only in the participants who are sensitive to PH-induction
i.e. higher PH ratings in the asynchronous versus synchronous con-
ition) do we observe a significant increase in transition probabilities
rom all CAPs to CAP 6, as if this CAP is neurally “attracting ” the other
APs ( Fig. 5 A). Accordingly, we argue that PH induction can be char-
cterized by a perturbation of the “normal ” brain network dynamics,
onsisting in an increase of the probability of all CAPs transitioning to
AP 6. No such changes in transition probabilities are observed in the
ynchronous condition, rest, nor in the control analyses performed with
oth control groups of control seed regions. Moreover, the fact that this
AP 6 change is not associated with the closely related conscious expe-
ience of PE, provides a disambiguation of the neural underpinnings of
H from those of PE (which are discussed in a subsequent section), even
f PH is behaviourally, as tested by the present robotic system, typically
ccompanied by PE. 

CAP 6 mainly consists of the right pSTS, the right dlPFC (includ-
ng the IFG seed), the mPFC (including the SMA), and the bilateral
G. The former two areas (used as seeds in this analysis) have been
reviously linked to the PH ( Arzy et al., 2006a ; Blanke et al., 2014 ;
ernasconi et al., 2021 ). In addition, the pSTS is a multisensory and
ensorimotor brain region which responds to tactile, visual and audi-
ory stimuli ( Beauchamp et al., 2008 ), as well as movement-related pro-
esses ( Zito et al., 2020 ) and multisensory hallucinations ( Ghazanfar and
chroeder, 2006 ). The mPFC cluster in CAP 6 has often been associated
ith different self-related processes ( Gusnard et al., 2001 ; Platek et al.,
006 ; Beer et al., 2010 ; Whitfield-Gabrieli et al., 2011 ). In particu-
ar, a meta-analysis investigating the role of self-related, familiar, and
ther-related stimuli, identified this mPFC cluster as the main brain re-
ion distinguishing between self and other related processing ( Qin and
orthoff, 2011 ). We further note that the mPFC cluster includes the
MA, a region which has been implicated in bodily self-consciousness
i.e. Ferri et al., 2012 ; Ionta et al., 2013 ). The involvement of the bi-
ateral AG has also been previously linked to PH, given that lesions in
his area are associated with PH ( Blanke et al., 2014 ). Finally, the deac-
ivations we observe in the present study over the cuneus and occipital
yrus, which represent decreased BOLD in the secondary visual network
 Shirer et al., 2012 ), are likely to be associated with opposing fluctua-
ions between different functional networks ( Fox and Raichle, 2007 ). 

Disturbed interactions between functional networks have been hy-
othesized to represent a neural mechanism associated with several psy-
hotic processes ( Menon, 2011 ). Previous work suggested that halluci-
ations occur due to erroneous switches between two intrinsic networks,
he central executive network (CEN) and default-mode network (DMN)
 Menon and Uddin, 2010 ; Goulden et al., 2014 ). In particular, recent re-
earch showed that, when comparing hallucination and no-hallucination
eriods in schizophrenia, the interactions between major intrinsic net-
orks follow different transition rules ( Lefebvre et al., 2016 ). Similar
echanisms have also been proposed for Parkinson patients suffering

rom psychosis ( Shine et al., 2014 , 2015 ; Ffytche et al., 2017 ), a popula-
ion typically afflicted by PH ( Fénelon et al., 2011 ). The present data are
ompatible with that proposal. However, while previous work compared
atients with hallucinations versus patients without hallucinations or
atients with versus without psychosis, we report data in healthy partic-
pants in whom a specific hallucination, PH, is induced experimentally
nd in controlled fashion. Our data demonstrates, under the form of
ltered transition probabilities, that the induction of PH leads to aber-
antly increased transitions to CAP 6, and that, by consequence, sig-
ificantly different network interactions are observed between partici-
ants sensitive and those insensitive to PH induction. These results pro-
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ide further evidence that hallucinations result from erroneous network
witches ( Goulden et al., 2014 ; Lefebvre et al., 2016 ) and extend this
roposal to experimentally controlled hallucinations in healthy individ-
als. 

.2. Neural correlates of the PE-induction 

Most participants that were sensitivity to the induction of PH dur-
ng the asynchronous condition of the sensorimotor task, experienced it
ith the accompanying sensation of PE. However, several participants

hat did not experience robot-induced PH in the asynchronous condi-
ion, nevertheless reported PE. Despite the strong link between these
wo sensations when being robotically induced in healthy individuals,
he occurrence of PE without PH, paired with the use of dFC methods,
llowed us to identify the different neural mechanisms that underlie
oth experiences. Although we observe three CAPs that have their oc-
upancy and average duration modulated by the sensorimotor task (CAP
, CAP 7, CAP 9), we find that only the change in the transition proba-
ilities to CAP 9 is associated with PE. Distinctly from the induction of
he PH, where all CAPs increase their transition probabilities to CAP 6,
he induction of PE in the asynchronous condition is characterised by
 significant decrease of the transition probabilities of all CAPs to CAP
, suggesting that this brain pattern is generally avoided in the event of
E. No such significant changes in transition probabilities to CAP 9 are
bserved in the synchronous condition, rest, nor in the control analyses
erformed with both groups of control seed regions. 

CAP 9 overlaps in three main regions with CAP 6; i.e., the pSTS,
PFC, and bilateral AG. Besides the implications that have been pro-
osed for the latter component in PH, we consider a possible dual role
f this region, given that the AG has been extensively implicated in PE
oth in healthy individuals ( Farrer and Frith, 2002 ; Blakemore et al.,
003 ), and in patients with schizophrenia and symptomatic passivity
xperiences ( Farrer et al., 2004 ). In addition to these common regions,
AP 9 also includes the precuneus, the PCC, extensions of the pSTS ac-
ivation over the middle temporal gyrus, and the mPFC cluster, which
ere does not include the SMA and is significantly larger than in CAP
, extending to midline cortical structures over the ventral and dor-
al medial prefrontal cortexes. The presence of the bilateral AG, pre-
uneus, PPC, together with the observed midline cortical structures,
hich overlap significantly with the midline cortical structures of the
MN ( Raichle et al., 2001 ; Shirer et al., 2012 ), suggest that the brain
attern of CAP 9 is closely related to the DMN. This is consistent with
revious studies using the same or similar dFC methods, which recov-
red either parts or the complete DMN ( Kiviniemi et al., 2011 ; Liu and
uyn, 2013 ; Liu et al., 2018 ). Diminished network interactions with the
MN in hallucinations have been reported before; e.g., in first-episode
sychosis patients ( Jardri et al., 2013 ), and in schizophrenic patients
ith positive symptoms ( Lefebvre et al., 2016 ), both spontaneously hal-

ucinating during resting state fMRI. The effect observed here for PE,
ith most CAPs decreasing their transition probabilities to CAP 9, con-

rasts with our initial prediction that PE, as PH, would be grounded on a
ominance of a brain state over another. However, shunning of specific
etworks is known in hallucinations, particularly for the DMN, as ob-
erved in psychotic patients ( Jardri et al., 2013 ; Lefebvre et al., 2016 ).
ue to the very significant number of features shared between the iden-

ified CAP 9 for which this mechanism occurs associated with PE, and
he DMN, we do not exclude the possibility that what is detected here
or PE-induction might be in fact a more general mechanism underlying
allucinations, beyond PE. 

.3. Mechanisms of PH and PE in robotically mediated induction of 

allucinations 

In the present work, we find that both the induction of PH and PE are
haracterized by significant changes in network interactions. We previ-
usly described two regions, pSTS and IFG, that were more active dur-
10 
ng robot-induced PH in the asynchronous condition ( Bernasconi et al.,
021 ) and that also overlapped with an impaired functional network
s defined in neurological patients with clinically-relevant PH. Based
n the present findings, we propose that the activations of the pSTS
nd IFG in the asynchronous condition represent a general predispo-
ition to the variations in network behaviour observed for CAP 6 and
AP 9, which lead to PH and PE respectively. Hence, in the asyn-
hronous condition, the predisposition to having PH or PE is marked
y such activations of the pSTS and IFG, but, importantly, PH and
E will only occur once the changes in network behaviour also oc-
ur. This view is supported by observations that certain brain regions
an have a prominent role in the switching between different networks
 Sridharan et al., 2008 ; Manoliu et al., 2014 ). In addition, hallucina-
ion processes in psychopathology also lend support to this hypothe-
is. Positive symptoms in schizophrenia and schizotypal disorders, can
e marked by constant dysfunctions in functional connectivity between
rain regions, that correlate with hallucination severity ( Fletcher and
rith, 2009 ; Skudlarski et al., 2010 ; Ettinger et al., 2015 ), however, the
ccurrence of hallucinations is limited to time periods characterized by
hanges in network interactions ( Lefebvre et al., 2016 ). 

.4. Methodological considerations 

The study of dynamics of brain activity as measured by fMRI has re-
eived considerable attention during the past decade ( Hutchison et al.,
013 ; Preti et al., 2017 ) and is particularly relevant to explain com-
lex behaviour and psychopathology ( Bolton et al., 2020a ). In this work,
e opted for CAPs analysis, which starts from the selection of relevant

eeds, to probe their interaction with the rest of the brain in terms of
ynamically occurring co-activation patterns. The most interesting al-
erations found in this study were characterized by transition probabil-
ties, a rather subtle correlate of brain activity that has not yet been
xploited to a big extent. More work is thus needed on this topic. There
re also a number of limitations. First, we focused our analysis by choos-
ng as seeds, two key brain regions previously identified for PH. While
his approach allowed us to narrow down the scope of the measures,
t might also be that other processes in the brain were missed. Second,
he recovery of temporal dynamics by dFC methods, such as transitions
etween CAPs, might have been limited by the TR of 2.5 s that was cho-
en in the original study ( Bernasconi et al., 2021 ). However, it is the
aemodynamic response function that intrinsically limits the temporal
ynamics (e.g., average durations are longer than 3 s), and, therefore,
onventional TRs of 2–3 s are still useful to probe temporal processes
etween brain regions ( Sahib et al., 2018 ). Third, temporal sequence
nalysis could be extended by generative models ( Bolton et al., 2018 ;
idaurre et al., 2017 ; Zhang et al., 2020 ), which can even be applied to

ndividual nodes instead of at the network level ( Bolton et al., 2020c ).
nother option would be to apply effective connectivity models, such as
ynamic causal modelling ( Friston, 2011 ) or Granger causality ( Valdés-
osa et al., 2005 ), which are used to infer inter-regional interactions sup-
orted by anatomical connections. Finally, future fMRI studies should
etermine the intensity of robot-induced PH and PE after each condition
nd across a larger range of sensorimotor stimulation conditions (i.e. as
one in a behavioural task with patients in: Bernasconi et al., 2021 ) in
rder to measure and analyse the induced hallucinatory state in a more
ne-grained manner. 

. Conclusion 

In sum, we identify dynamic fluctuations of brain activity that under-
ie PH and PE in healthy participants. We show that, the robot-induced
ensations in the asynchronous condition are characterized by subtle
hanges in brain pattern transitions. Whereas the asynchronous condi-
ion is characterized by increased activations of the pSTS and IFG, as
ell as higher occupancy and average duration of the network CAP 6,
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or PH, we identify a significant increase of the probabilities for all ob-
erved brain patterns to transition to CAP 6, and for PE, we observe an
voidance of all observed brain patterns to transition to a partly over-
apping, but different network, CAP 9. These results highlight the sub-
le neural changes of a specific network during robot-induced PH in
ealthy individuals and further disambiguate the brain processes of PH
rom those of the typically accompanying PE. Furthermore, we extend
hanges in network behaviour associated with clinically relevant hal-
ucinations ( Menon, 2011 ; Jardri et al., 2013 ; Lefebvre et al., 2016 ) to
etwork behaviour during an experimentally-controlled specific hallu-
ination, PH. 
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